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EMP-002a Phase Shift through the Ionosphere

R. Soltz, D. Simons, E. Fenimore, S. Wilks, T. Carey
Lawrence Livermore National Laboratory

In this note we review the derivation and use of the Ionospheric Transfer Function (ITF) in the DIO-
RAMA model to calculate the propagation of a broad band ElectroMagnetic Pulse (EMP) through the
Ionosphere in the limit of geometric optics. This note is intended to resolve a misunderstanding between
the NDS VVA and EMP modeling teams regarding the appropriate use of the phase and group velocities in
DIORAMA. The different approaches are documented in EMP-002 note, “Phase vs. Group” [1], generated
by the LLNL DIORAMA VVA team, and the subsequent response from the DIORAMA EMP modeling
team’ [2].

We show that the form that we suggest for the EMP propagation through the Ionosphere is a direct
solution to Maxwell’s equations, using a Fourier Transform of the the electromagnetic wave equation in
the WKB approximation. The result is expressed as an exponential of a path integral over the index of
refraction, which is itself a solution the Appleton-Hartree Equation. The index of refraction may be written
in terms of the phase velocity, but the main point is that the solution to Maxwells Equations depends upon
the value of the index of refraction, and not its derivative, as would be the case for an explicit dependence
on the group velocity.

We assume that the concepts of phase velocity, vp = ω/k, and group velocity, vg = ∂ω/∂k, are well
understood by both the EMP modeling and VVA teams, as described in the standard texts [3, 4]. Following
the derivation in Sec. 1, we generate in Sec. 2 an analytic solution for a narrow band, Gaussian wave packet
propagating through the ionosphere. According to our derivation this produces the expected transit time
that is consistent with the group velocity. In Sec. 3 we present a numerical solution for a wide band pulse,
to demonstrate that both a change in the formula and a sign change are required for DIORAMA to produce
a result that conforms to Maxwells Equations and does not violate causality.

We provide concise derivations of the Appleton-Hartree Equation and the W.K.B. approximation in
the Appendices. These are included in order to complete the connection between the proposed form of the
Ionospheric Transfer Function (ITF) and Maxwells Equations, however, these derivations can be found in
many standard texts and online.

1 Propagation of ElectroMagnetic Waves through the Ionosphere

We begin with well known Appleton-Hartree Equation for the index of refraction, η = kc/ω, for a cold,
collisionless plasma in the presence of an external magnetic field,

η2 = 1− 2X(1−X)

2(1−X)− (Y sin θ)2 ±
√

(Y sin θ)4 + 4(1−X)2(Y cos θ)2
, (1)

where X = ω2
pe/ω

2 ≡ ne2/(meε0ω
2), Y = Ωce/ω ≡ eB/(meω), and θ refers to the angle of Poynting

vector, E × B, with respect to the local magnetic field. The derivation for this equation is summarized
in Appendix A. With the dispersive nature of the medium specified by the index of refraction, the spatial
variation in the wave equation takes the form

∇2E + k2(r)E = 0, (2)

∇2E +
ω2

c2
η2(r)E = 0, (3)
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where the spatial dependence of the index of refraction has been made explicit. In one dimension, along
the vertical direction, z, this simplifies to

d2E

dz2
+
ω2

c2
η2(ω, z)E = 0. (4)

For the case in which the wavelength is much smaller than the length scale for variations in the index of
refraction, the W.K.B. approximation can be employed. The first order solution is then given by

E(z) =
1√

η(ω, z)
exp

[
±iω

c

∫ z

0
η(ω, z′)dz′

]
. (5)

The W.K.B. approximation is explained in more detail in Appendix B. In what follows we will drop the
1√
η(ω,z)

term from our equations for two reasons: it has no effect on the calculation of the time delay, and

it is canceled by the inverse term from the magnetic field when calculating the power spectrum with the
Poynting vector.

The time-dependent solution for an electric field oscillation of a given frequency emanating upwards
from the ground takes the form

E(z, t) = A exp

[
−iω

c

∫ z

0
η(ω, z)dz + iωt

]
. (6)

To calculate the phase shift given by Eq. 6 it is simpler to work in the frequency domain, by applying
a Fourier Transform to obtain the phase delay, and then inverting to recover the time dependence. This
is the procedure used in DIORAMA. In the most recent DIORAMA release, version-11.4, the EMPPropa-
gator Fourier Transform calls are wrapped in the EMPFFT.cpp methods. These methods call the FFTW
library [5], which perform a discrete Fourier Transform between the time and frequency domains using the
following convention expressed in the continuum limit,

H(ω) =

∫ ∞
−∞

h(t)e−iωtdt, (7)

h(t) =

∫ ∞
−∞

H(ω)eiωtdω. (8)

We note that this convention is common but not universal, .e.g see [6] for an example of Fourier Transforms
with the opposite sign convention.

Using this convention, the amplitude for the electromagnetic wave of a given frequency is

E(z, ω) = Aω exp

[
−iω

c

∫ z

0
η(ω, z′)dz′

]
, (9)

and the time-dependence is then recovered by applying the inverse Fourier Transform to obtain

E(z, t) =

∫ ∞
−∞

Aω exp

[
−iω

c

∫ z

0
η(ω, z′)dz′

]
eiωtdω, (10)

=

∫ ∞
−∞

Aω exp

[
iωt− iω

c

∫ z

0
η(ω, z′)dz′

]
dω. (11)

We note that one could replace the term η(ω,z)
c with 1

vp(ω,z)
, the phase velocity at a specific height and for

a specific frequency. However, the use of the index of refraction in Eq. 11 has the advantage that it makes
the connection to Maxwells Equations more explicit.
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2 Analytic Calculation for a Gaussian Wave Packet

Here we examine the simple case of a narrow, Gaussian wave packet propagating from the ground to a
height, L, through a cold, collisionless plasma in the absence of a magnetic field.

Aω = A exp

[
−(ω − ω1)

2

2σ2

]
, (12)

η(ω, z) =

√
1−

ω2
p(z)

ω2
(13)

≈ 1−
ω2
p(z)

2ω2
, for ω � ωp. (14)

For a narrow wave packet, we can expand the quantity ω
c η(ω, z) about ω1.

ω

c
η(ω, z) =

(
ω1

c
−
ω2
p(z)

2ω1c

)
+

(
1

c
+
ω2
p(z)

2ω2
1c

)
(ω − ω1) +O

(
(ω − ω1)

2
)

(15)

=
ω

c
−
ω2
p(z)

ω1c
+
ω2
p(z)ω

2ω2
1c

+O
(
(ω − ω1)

2
)

(16)

=
ω

c
− bn(z)

ω1c
+
bn(z)ω

2ω2
1c

+O
(
(ω − ω1)

2
)

(17)

where we have isolated the dependence on the electron density, n(z), with the substitution b = e2

ε0me
, and

the first order nature of this has been made explicit. The integral over the z-dependent index of refraction
can then be evaluated in terms of the electron content, Ne(L). To first order we have,

ω

c

∫ L

0
η(ω, z′)dz′ =

ωL

c
− bNe(L)

ω1c
+
bNe(L)ω

2ω2
1c

. (18)

The electric field at z = L and t is then,

E(L, t) = A

∫ ∞
−∞

exp

[
−(ω − ω1)

2

2σ2
+ i

(
ωt− ω

c
L+

bNe(L)

ω1c
− bNe(L)ω

2ω2
1c

)]
dω, (19)

= A exp

(
i
bNe(L)

ω1c

)∫ ∞
−∞

exp

[
−(ω − ω1)

2

2σ2
+ iωτ

]
dω, (20)

where we have defined, τ = t−
(
L
c + bNe(L)

2ω2
1c

)
. Completing the square yields

E(L, t) = A exp

(
i
bNe(L)

ω1c

)∫ ∞
−∞

exp

[
−
(
ω − ω1√

2σ
− i σ√

2
τ

)2

− σ2τ2

2
+ iω1τ

]
dω, (21)

= A
√

2πσ exp

[
i
bNe(L)

ω1c
+ iω1τ

]
exp

(
−σ2τ2

2

)
. (22)

Therefore the electric field will be Gaussian in time, having a width inversely proportional to the frequency
and a peak at time tp = L

c + bNe(L)
2ω2

1c
. The effective velocity for this wave packet is therefore,

vgauss =
L

tp
=

c

1 + bNe(L)
2ω2

1L

. (23)
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This is similar to the average group velocity, evaluated at ω1 to first order,

vgroup =
1

dk/dω
=

c

(d/dω)(ηω)
=

c

[η(ω) + ω(dη/dω)]
=

c[
1− bNe(L)

2ω2
1L

+ ω1
bNe(L)
ω3
1L

] (24)

=
c[

1 + bNe(L)
2ω2

1L

] . (25)

Thus we arrive at the expected result: the phase velocity enters through the index of refraction in the
W.K.B. approximation, and the Fourier Transform converts this into a wave packet with a time delay that
is consistent with the group velocity for a narrow band wave packet centered at ω = ω1.

We note that in this first order calculation, the width of the packet is independent of Ne and does
not spread out in time, a characteristic of a dispersive medium. This deficiency would be remedied by
expanding to second order in (ω − ω1), which would introduce an imaginary term in the coefficient of ω2

within the exponent. This effect will be taken into account in the next section, which provides a numerical
example for a more realistic wave form that is closer to the calculation performed in DIORAMA.

3 Numerical Calculation

Here we repeat the exercise of calculating the ionospheric time delay, but for a double-exponential electric
pulse of the form

V (t) =
V0

e−(t−t0)/a + e−(t−t0)/τb
, (26)

with V0=100 Volts/meter (at 1 meter), a=1 nsec, and b=15 nsec. The propagation of this wave form is
solved numerically using the full Appleton-Hartree equation and a Fast Fourier Transform routine, F ,

E(L, t) = F
[
Aω exp

(
−ωL
vp

)]
, (27)

with phase velocity defined by the index of refraction from Eq 1, and

ωpe = 8.98 · 10−12
(

TEC

L

)
, (28)

Ωce = 2.8 · 0.45 Gauss, (29)

θ = π/4. (30)

For this example, the total electron content, TEC=60 · 1016 e/m2, and L = 5 · 105 m. For comparison, we
also perform a similar calculation substituting the group velocity for the phase velocity in Eq. 27, where
the group velocity is evaluated numerically from the derivative of the index of refraction,

vg =
c

η(ω) + ω(dn/dω)
(31)

The results are shown in Fig. 1. The red band shows the results using the phase velocity in Eq. 27,
with the signal arriving after the 1667 microsecond time of flight for the vacuum transit time. Substituting
the group velocity produces the green band, which precedes the vacuum transit time, violating causality.
The blue and purple bands show the impact of including a narrow band receiver filter at 25 ± 2 MHz.
Note that the two bands are not symmetric about the vacuum transit time, indicating that reversing the
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Figure 1: Phase delay for Gaussian wave packet using both phase (red) and group (green) velocities.

sign in the Fourier Transform combined with the use of group velocity in place of the phase velocity are
not fully compensating.

These two errors are evident in the most recent version of the DIORAMA EMP package, lanl emp-
1.0.0.alpha.2plus. Line 2190 of EMPPropagator.cpp reads,

delay = (s1 + s3) / emp::constant::kc0 + s2 / group_vel;

We therefore conclude that for the DIORAMA EMP package to be valid, these lines should be replaced
with

delay = (s1 + s3) / emp::constant::kc0 - s2 * eta_over_c;

where eta_over_c is the index of refraction divided by the speed of light. We also request that a similar
correction be made in any other instances in which group velocity is incorrectly used to generate a phase
delay in the frequency domain.

The Appendices which follow are only provided for completeness, to illustrate that the Ionospheric
Transfer Function of Eq. 11 follows directly from Maxwells Equations.
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A Derivation of Appleton-Hartree Equation

We begin with the time dependent expressions of Maxwell’s Equations and the Langevin equation of motion
for the electrons in the ionosphere:

∇×E = −∂B
∂t
, (32)

∇×B = µ0

(
−enu + ε0

∂E

∂t

)
, (33)

m
du

dt
= −e (E + u×B)−mνu, (34)

where e, m, n, u, are the electron charge, mass, density, and four-velocity. We will neglect the electron
collision frequency, ν, as well as cross terms in u and the time dependent components of B. The frequency

of the ion motion, ωpi ≡
√

nZ2e2

miε0
, is also assumed to be negligible. If we furthermore assume plane wave

solutions of the form exp(ik · r − iωt), these equations reduce to the following set of coupled equations
between the electric field and the electron current:

k× k×E +
ω2

c2
=
iωen

ε0c2
u, (35)

u +
ie

mω
(u×B0) =

−ie
mω

E, (36)

where B0 is the local magnetic field. Solving these equations leads to the familiar Appleton-Hartree
equation for the index of refraction, η = kc/ω,

η2 = 1− 2X(1−X)

2(1−X)− (Y sin θ)2 ±
√

(Y sin θ)4 + 4(1−X)2(Y cos θ)2
, (37)

where X = ω2
pe/ω

2 ≡ ne2/(meε0ω
2), Y = Ωce/ω ≡ eB/(meω), and θ refers to the angle of Poynting vector

with respect to the local magnetic field.

B The W.K.B. Approximation

The W.K.B. approximation is used to generate solutions to second-order differential equations of the form

d2y(z)

dz2
± p(z)2y(z) = 0. (38)

for regions where p(x) is large relative to the variation in y(x). This is the case for Eq. 4 where ω/c is
large and η varies slowly, i.e. the wave-length is much smaller than the length-scale for the plasma-density
gradient:

d2E

dz2
+
η2(z)

ε2
E = 0, (39)

where we have set ω
c = 1

ε to emphasize the scale of the pre-factor, η
ε . The derivation of the W.K.B.

approximation follows a common practice in solving differential equations, by guessing an initial solution,
and then modifying it in an iterative fashion. Eq. 39 suggests a solution of the form,

E(z) = eiφ(z), (40)
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which yields the following differential equation for φ(z):

i
d2φ

dz2
−
(
dφ

dz

)2

+
η2

ε2
= 0. (41)

If we assume the second derivative to be much less than the other two terms, we have(
dφ

dz

)2

=

(
η

ε

)
, (42)

φ(z) = ±1

ε

∫ z

0
η(z′)dz′. (43)

This is the zero’th order W.K.B. approximation to Eq. 39, which takes the form

E(z) = exp

[
± i
ε

∫
η(z)dz

]
. (44)

This is a reasonable approximation if we have d2φ
dz2

= dη
dz �

η2

ε , which is more commonly written as,∣∣∣∣ ddz 1

η(z)

∣∣∣∣� ω

c
. (45)

Higher order terms of the W.K.B. approximation are obtained by iterating upon this solution. This
process can be expressed more compactly as

E(z) =

(
exp

[
± i
ε

∫
η(z)dz

])(
φ0(z) + εφ1(z) + ε2φ2(z) + . . .

)
. (46)

Inserting Eq. 46 to all orders into Eq. 39 yields,(
φ0(z) + εφ1(z) + ε2φ2(z) + . . .

)′
+
η′

2η

(
φ0(z) + εφ1(z) + ε2φ2(z) + . . .

)
∓ iε

2η

(
φ0(z) + εφ1(z) + ε2φ2(z) + . . .

)′′
.

Setting ε to zero leads to,

φ′0(z) +
η′

2η
φ0(z) = 0. (47)

This yields the following pre-factor of the first-order W.K.B. approximation,

φ0(z) =
1√
η(z)

, (48)

which matches the first-order W.K.B. solution given in Eq. 5.
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